Quantitative FRET Analysis With the E0GFP-mCherry Fluorescent Protein Pair
نویسندگان
چکیده
منابع مشابه
Practical and reliable FRET/FLIM pair of fluorescent proteins
BACKGROUND In spite of a great number of monomeric fluorescent proteins developed in the recent years, the reported fluorescent protein-based FRET pairs are still characterized by a number of disadvantageous features, complicating their use as reporters in cell biology and for high-throughput cell-based screenings. RESULTS Here we screened some of the recently developed monomeric protein pair...
متن کاملA Guide to Fluorescent Protein FRET Pairs
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compati...
متن کاملRed fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET.
We have developed the first red fluorescent protein, named rsTagRFP, which possesses reversibly photoswitchable absorbance spectra. Illumination with blue and yellow light switches rsTagRFP into a red fluorescent state (ON state) or nonfluorescent state (OFF state), respectively. The ON and OFF states exhibit absorbance maxima at 567 and 440 nm, respectively. Due to the photoswitchable absorban...
متن کاملSecreted dual reporter assay with Gaussia luciferase and the red fluorescent protein mCherry
The availability of a wide range of reporter proteins, which can easily be quantitated, has had a major impact on many fields of biomedical research. In some experiments with tissue culture cells, it is necessary to control for differences in transfection efficiency and in other expression parameters. This requirement has been very conveniently met with the popular dual luciferase assay. Its di...
متن کاملγPNA FRET Pair Miniprobes for Quantitative Fluorescent In Situ Hybridization to Telomeric DNA in Cells and Tissue.
Measurement of telomere length by fluorescent in situ hybridization is widely used for biomedical and epidemiological research, but there has been relatively little development of the technology in the 20 years since it was first reported. This report describes the use of dual gammaPNA (γPNA) probes that hybridize at alternating sites along a telomere and give rise to Förster resonance energy t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Photochemistry and Photobiology
سال: 2009
ISSN: 0031-8655,1751-1097
DOI: 10.1111/j.1751-1097.2008.00435.x